Water Quality InformationWritten By Actual Experts

RSS

Problems We Found With Orono/Veazie's Drinking Water

Analies Dyjak @ Tuesday, July 31, 2018 at 4:56 pm -0400

Analies Dyjak  |  Policy Nerd

For Hydroviv’s assessment of drinking water quality in Orono, Maine, we collected water quality test data from the most recent Consumer Confidence Report and the U.S. Environmental Protection Agency. We cross referenced water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in both Orono and Veazie drinking water.

Where Does Orono Source Its Drinking Water?

Orono and Veazie source its drinking water from four groundwater wells located just off of Bennoch Road. Orono-Veazie Water District treats its drinking water with chlorine, fluoride, and sodium hydroxide.

Lead In Orono/Veazie Drinking Water

In recent years, both municipalities have had a major problem with Orono-Veazie water quality, including lead in drinking water. Lead enters tap water through old lead service pipes and lead-containing plumbing. 10% of sites that were tested for lead had concentrations over 3.7 parts per billion. Environmental Protection Agency, Center for Disease Control, and American Academy of Pediatrics all recognize that there is no safe level of lead for children. Treated water leaving the plant may be in compliance with the loose EPA threshold of 15 parts per billion, but could become contaminated once exposed to older infrastructure. Additionally, municipalities are only required to test a handful of homes every few years, so the levels reported in the most recent annual water quality report might not reflect the lead levels in your tap water. Houses built before 1986 were most likely built with lead plumbing and lead fixtures. This is a huge problem for water quality in Orono, Maine because lead exposure can cause developmental issues, lowered IQ, and damages to the kidneys and brain. Orono has historically had high levels of lead in drinking water. For example, in 2012, 10% of samples tested for lead had concentrations over 13 parts per billion.

Disinfection Byproducts In Orono/Veazie Drinking Water

Orono/Veazie municipal water is contaminated with disinfection byproducts or DBPs. DBPs are formed when the chlorine-based disinfectants that are routinely added to the water supply, react with organic material. They are split into two categories: Total Trihalomethanes (TTHMs) and Haloacetic Acids-5 (HAA5). Water samples were collected and tested for DBPs from 1215 State Street and the University of Maine Student Union. Concentrations of HAA5 averaged 9 parts per billion at the State Street location and 33 parts per billion at the UMaine Student Union. Concentrations of TTHMs averaged 64 parts per billion at the State Street location and 36 parts per billion at the UMaine. For a bit of perspective, EPA’s Maximum Contaminant Level is 60 parts per billion for HAA5 and 80 parts per billion for TTHMs. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. Regulatory agencies have very little knowledge about the adverse health effects of DBPs, and their toxicity. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems.

It’s important to note that only a handful of contaminants are required to be included in annual Water Quality Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for Orono-Veazie water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water
Disinfection Byproducts In Drinking Water: What You Need To Know

EPA Proposes New Definition of "Waters of the United States"

Analies Dyjak @ Friday, February 15, 2019 at 3:01 pm -0500

Analies Dyjak & Matthew Krug

February 14th 2019: The Department of the Army and the Environmental Protection Agency posted the newly proposed “Waters of the United States” rule to the Federal Register. At its core, the proposed EPA WOTUS rule limits the water that EPA can regulate and monitor. By narrowing the scope of WOTUS definitions, this basically gives industries a roadmap of where it’s okay to pollute without the need for permitting. This is a big deal for the 45 million Americans who rely on well water for drinking and bathing. So, why should you care about the definition of waters of the United States?

"Waters of the United States"

This definition, also known as “WOTUS” has been up for debate for decades, and it’s interpretation has seen several Supreme Court cases. This proposed rule determines what waters the federal government is able to regulate and monitor. Generally, “waters” have traditionally been navigable waters such as oceans, rivers, ponds, and streams. As our scientific understanding of hydrology has improved, the scope of what are considered “waters” has expanded.

What Is Not Protected Under The Proposed Rule?

WOTUS definitions name certain waters as “excluded,” which, in this case, means they do not have a surface water connection. This means that groundwater, ephemeral streams, ditches, prior converted cropland and some wetlands and ponds are not included. This is a continued rollback of environmental regulations - and the 2019 EPA WOTUS rule proposal may have the farthest-reaching implications of all.

How Does This Proposed Rule Affect Drinking Water?

This rule puts the 45 million Americans that use private wells as a primary source of drinking water at risk. Private wells are not regulated by federal, state, or local governments, and agencies are not required to test for contaminants or ensure “compliance.” A 2006 study by the USGS concluded that private wells are already contaminated with various types of agricultural runoff, solvents, fumigants and inorganic compounds, the most common being arsenic and nitrates. Arsenic is a naturally occurring organic compound, that enters groundwater as bedrock weathers overtime. However, nitrates are used in fertilizers and enter both surface and groundwater from agricultural runoff. 8.4% of the wells tested in this study were in exceeded the federal standard for nitrates (we have an article dedicated specifically to nitrates in groundwater). Further, EPA does not provide recommended criteria or standards for private well users. By rolling back protections, private well users are being further kept in the dark.

How Did They Arrive At this Rule?

The proposed EPA WOTUS rule is primarily based off a majority opinion by Justice Scalia in the Supreme Court case Rapanos v. United States. Scalia’s interpretation favored “traditional waters,” and steered away from Justice Kennedy’s “significant nexus theory.” In his majority opinion, Scalia wrote that federal protections should cover:

“...only those wetland with a continuous surface connection to bodies that are waters of the United States.”

Who’s Driving?

The American Farm Bureau dominated the conversation at the press conference for the proposed EPA WOTUS rule in early December of 2018. Industries lobbied hard to limit the scope of jurisdictional waters. In a political landscape where there is an abundance of legislation grandfathered in to protect the chemical, fossil fuel, and agricultural industries, it should come as no surprise that the current administration did not break from tradition. The agricultural industry is not the only institution who will benefit from this proposed rule. Chemical manufacturing companies have to go through a rigorous permitting process determined by state or federal governments (NPDES) which regulate pollution. But now, with a clearly defined and reduced scope of what constitutes a water of the United States, these companies are able to map out how to circumvent regulation.

The federal government has designated this as “economically significant”

This means that the proposed rule with have an annual effect on the economy of $100 million or more. 

Our Take:

This proposed WOTUS definitions puts the 15% of the country at further risk of groundwater contamination. This population of people are now on their own in terms of monitoring their drinking water and keeping up with land use changes. Our science team will be submitting public comments on this proposed rule, which will be available on our website in the upcoming weeks. We encourage our readers to do the same thing! CLICK HERE for the link to the WOTUS public comment page.

Other Articles We Think You Might Enjoy:
5 Reasons Why Bottled Water Isn't The Solution To Drinking Water Contamination
Nitrates In Drinking Water
Why Runoff From Farms Is A Big Deal

Problems We Found In Chattanooga's Drinking Water

Analies Dyjak @ Thursday, July 26, 2018 at 2:29 pm -0400

Analies Dyjak  |  Policy Nerd

For Hydroviv’s assessment of Chattanooga, Tennessee’s drinking water, we collected water quality test data from the city’s Consumer Confidence Report and the U.S. Environmental Protection Agency. We cross referenced Chattanooga’s water quality data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Chattanooga’s drinking water.

Where Does Chattanooga Source Its Drinking Water?

Chattanooga sources its drinking water primarily from the Tennessee River. Chattanooga's tap water is treated at the Tennessee American Water Citico Water Treatment Plant before being distributed to over 177,000 people in Chattanooga.

Disinfection Byproducts In Chattanooga’s Drinking Water

In recent years, Chattanooga's water quality has had a major problem with disinfection byproducts or DBPs. DBPs form when chlorine-based disinfectants that are routinely added to treat incoming water, react with organic matter. DBPs are split into two categories; Haloacetic Acids-5 (HAA5) and Total Trihalomethanes (TTHMs). Concentrations of TTHMs averaged 70 parts per billion, but were detected as high as 89.1 parts per billion in Chattanooga water. HAA5 concentrations averaged 41.8 parts per billion and reached levels as high as 51.4 parts per billion. For a bit of perspective, EPA's Maximum Contaminant Level for HAA5 is 60 parts per billion and 80 parts per billion for TTHMs. While technically still in compliance, these levels are definitely high. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. Regulatory agencies have very little knowledge about the adverse health effects of DBPs, and their toxicity.

Lead In Chattanooga’s Drinking Water

Next is lead. Lead enters Chattanooga's tap water through old lead service pipes and lead-containing plumbing. 10% of sites that were tested for lead had concentrations over 2 parts per billion. Environmental Protection Agency, Center for Disease Control, and American Academy of Pediatrics all recognize that there is no safe level of lead for children. While this years lead concentrations in Chattanooga are relatively low compared to other municipalities in the US, lead is a neurotoxin that can potentially be harmful at any concentration. 

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for Chattanooga’s tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water
Disinfection Byproducts In Drinking Water: What You Need To Know

Orthophosphate and Lead Contamination in Drinking Water

Analies Dyjak @ Monday, October 1, 2018 at 1:10 pm -0400

Analies Dyjak  |  Policy Nerd

Lead contamination in drinking water is a huge problem for municipalities with an older infrastructure. Lead contamination occurs when water comes in contact with lead pipes. This article discusses a common additive used to combat lead pipe corrosion.

What is Orthophosphate?

Orthophosphate is a common corrosion inhibitor used by water suppliers to prevent lead pipes from leaching. When orthophosphate water treatment is added to a water source, it reacts with lead to create a mineral-like crust inside of the lead pipe. This crust acts as a coating which prevents further lead corrosion. The use of orthophosphate treatment in drinking water became popularized in 2001, during the lead crisis in Washington, D.C. Lead contamination in many cities including D.C. and Flint, occurs when a city’s water becomes more corrosive, which can allow for lead from pipes to leach into the drinking water supply. When the lead problem initially occurred, cities such as Flint, Michigan, Durham and Greenville, North Carolina, and Jackson, Mississippi didn’t learn from D.C’s mistakes and all had lead outbreaks. 

Does Orthophosphate Fix Lead Contamination?

It certainly can. Once the protective layer is formed, cities can find that lead concentrations in the water drop by 90%. However, Orthophosphate is somewhat of a bandaid to temporarily fix the presence of lead in drinking water. For example, if the protective layer is corroded away or otherwise disturbed (e.g. in the case of a partial service line replacement or the water’s corrosivity changes), lead can leach back into the water. Finally, not all municipalities are adding orthophosphate to drinking water because of its cost. If you have any questions regarding lead prevention in drinking water, send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead In Drinking Water: What You Need To Know
Lead and Copper Rule
Things To Know Before Replacing Your Home's Lead Service Pipes

How Does Stormwater Runoff Affect Drinking Water?

Analies Dyjak @ Tuesday, October 30, 2018 at 4:10 pm -0400

*Updated 3/2/22 to include recent study*

Analies Dyjak  |  Policy Nerd

Heavy rains and snowmelt can carry a lot of unwanted contaminants into drinking water sources. Here’s how stormwater runoff can affect your water.

How Does Stormwater Affect Drinking Water?

Heavy rain storms create a rapid influx of water, which can cause a host of health and environmental issues. Rainwater travels to low-lying bodies of water, including oceans, lakes, rivers, streams, and aquifers. Both surface and groundwater are susceptible to contamination from stormwater runoff, both of which are sources of drinking water. As water travels, it picks up loose debris, pesticides, herbicides, oil, and other types of pollution in its path. This cocktail of contaminants is then dumped into a nearby waterway. Some municipal water treatment facilities are equipped to deal with these types of contamination, while others are not. 86% of the U.S. population gets their drinking water from surface water sources, so maintaining clean lakes and rivers is extremely important for managing stormwater runoff pollution in drinking water.

Road Salt and Drinking Water Contamination 

70% of the US population lives in areas that experience ice and snow, and rely heavily on road salts and other deicing techniques to maintain road safety. Road salts are crucial for decreasing automobile accidents, but they can have some unintended consequences on the environment. A recent study found that freshwater contamination from these deicing materials causing significant increases in the salinity of the freshwater, resulting in issues with native wildlife and widespread contamination of drinking water supplies. The contamination is primarily from excess chloride and sodium, which affects both surface water and groundwater, for municipal water suppliers as well as private wells. In addition, deicing salts can leach heavy metals (such as mercury, lead, cadmium, copper, and zinc) from sediment and plumbing pipes into the drinking water. In groundwater, sodium can also mobilize dissolved radium, increasing the risk of radon exposure to homeowners.

What Are Combined Sewer Overflows or CSO’s?

Combined Sewer Overflows or CSO’s, are a system of underground canals that collect stormwater runoff, industrial wastewater, and sewage all in the same pipe. Under normal conditions, stormwater and sewage travels to a wastewater plant where it’s treated before being discharged into a body of water. During heavy rain events, the large influx of stormwater causes pipes to exceed the capacity of the the system. Untreated wastewater, including sewage, overflows into nearby oceans, lakes, rivers or streams or wherever a stormwater discharge output exists. CSO’s were used as early as the 1850’s, and were the only system in place to deal with such high volumes of water. Many cities have replaced CSO’s with advanced infrastructure, but cities such as Portland, Maine and Cambridge, Massachusetts still use them.

Impervious Surfaces and Stormwater

Impervious surfaces are developed areas where water is unable to infiltrate into the earth. This typically refers to paved roads, roofs, and sidewalks. When water is unable to infiltrate, it flows into the nearest body of water or wastewater system. Impervious surfaces are of concern because water picks up and carries dangerous contaminants, then deposits pollution into drinking water sources. Impervious surfaces also increase the impacts from floods. Unable to percolate, water sits on top of paved roads, increasing the flood potential and presence of biological contamination. As communities continue to develop, the area of paved or impervious surface increases as well.

Wetlands: Important for Stormwater Retention

Wetlands offer remarkable protection from the impacts of flooding and other stormwater damages. Wetlands absorb incoming water and release it slowly, acting as a natural sponge. According to the U.S Army Corps of Engineers, the state wetland conservation along the Charles River in Boston, Massachusetts saved approximately $17 million in potential flood damage. Additionally, wetlands naturally filter stormwater runoff pollution. The fast-moving water is slowed by vegetation, which allows suspended sediment and pollution to fall to the bottom.

Other Articles We Think You Might Enjoy:
Surface Water: What You Need To Know
Agricultural Runoff: Why It's A Problem And What's Being Done To Stop It
Nitrates In Drinking Water