Water Quality InformationWritten By Actual Experts

RSS

Key Things To Know About Getting Your Water Tested

Analies Dyjak @ Thursday, June 8, 2017 at 6:42 pm -0400

Rebecca Labranche | Laboratory Director, A&L Laboratory

How Is Drinking Water Regulated?

The Environmental Protection Agency (EPA) sets regulatory limits for over 90 contaminants in water provided by public water systems. The EPA sets these limits in accordance with the Safe Drinking Water Act to protect public health in the communities that are using this water. The EPA limits are divided into two main categories. National Primary Drinking Water Regulations are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water that negatively affect human health. National Secondary Drinking Water Regulations are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards for water systems but does not require systems to comply. In addition to the federal EPA standards, The Safe Drinking Water Act (SDWA) gives individual states the opportunity to establish their own drinking water standards if they are not more lenient than those set by the EPA's national standards.

So how do these federal and state regulations affect private well-owners? These same limits and guidelines used for public water are also adopted by most institutions and lenders for home water testing as a way to determine if the property provides potable, safe water. When a home goes up for sale, if the buyer is financing, they will likely be required to test the water. While lenders may be concerned about a potable water source in order to protect their investment, there are no official rules or regulations for determining potability of private wells. Many states and towns do not even require sampling of private wells after installation. It is the responsibility of the homeowner to maintain their well and water supply. 

How Often Should Home Water Testing Be Conducted?

Private well water should be tested a minimum of once per year. Drinking water supplies obtained from shallow dug wells and surface water sources should be tested more frequently as they are more susceptible to contamination. Annual testing of both dug and drilled wells should check for the most common contaminants which are bacteria, nitrates and nitrites. Even if your water has consistently been safe to drink in the past, these parameters could change without you knowing, and affect the safety of your water. New drilled wells should be tested with a more comprehensive water test which includes bacteria, nitrates, nitrites, metals, minerals and radon. This test identifies many common primary and secondary contaminants typically found in the bedrock surrounding the well. This comprehensive test should be repeated every 3 – 5 years to ensure the well is still providing safe water.

What Are The Most Common Types Of Drinking Water Contaminants?

Drinking water contaminants can be divided into several categories: Inorganic Chemicals, Organic Chemicals, Radionuclides and Microorganisms. Testing for every possible analyte would be prohibitively expensive but we have put together a comprehensive test package which covers common problems found in our area.

Total Coliform

E.coli

pH

Nitrate-N

Nitrite-N

Copper

Iron

Manganese

Lead

Arsenic

Hardness

Magnesium

Calcium

Chloride

Fluoride

Uranium

Sodium

Radon

 

 

 

Laboratories throughout the United States will offer similar packages based on the geology in their area.

What Is The Process For Analyzing Drinking Water?

The process of analyzing drinking water varies by laboratory and their methods used. However, the basic premise is the same for all of them. The first step is to obtain a water test kit from the certified drinking water laboratory that you intend to use for the analysis. Home water testing kits are specific to each laboratory and their methods so it is important not to use another laboratory’s bottles. These test kits come with all the information that is needed to collect the sample and get it back to the laboratory in the required time frame. The sampling instructions are usually step by step and easy to follow. Once the water is received by the laboratory it will be analyzed for the requested parameters and a report will be generated and sent back to the client. The typical turn-a-round time for a comprehensive water test is 2-3 business days.

Using a certified laboratory is very important. They are monitored by their state and undergo periodic inspections to ensure that they are producing the highest quality data. During these inspections their instruments, standard operating procedures, lab technicians, quality control documentation and reporting procedures are reviewed and evaluated. If anything is found to be out of compliance certification for the laboratory can be revoked. In addition to inspections, they also have to complete proficiency tests for each method they conduct to prove that they can perform the method properly and obtain results within the specified limits.

What Are The Risks Associated With Consuming And/Or Using Contaminated Water?

The risks vary greatly depending on which contaminants you have in your water. Common health effects include gastrointestinal illness, reproductive problems, neurological disorders and cancer. These health problems pose a greater threat to young children, pregnant women, the elderly, and people with compromised immune systems. The health effects of drinking contaminated water can range from no physical impact to severe illness or even death.

Some of the effects of drinking contaminated water are known almost immediately. Immediate health related issues generally stem from contamination by pathogens such as total coliform and E.coli. Symptoms include gastrointestinal and stomach illnesses such as nausea, vomiting, cramps, and diarrhea.

Other contaminants pose health effects that may not be observed for many years. Some of the most common ones are:

Arsenic in water occurs naturally as well as from industrial activities. Studies have shown that chronic or repeated ingestion of water with arsenic over a person’s lifetime is associated with increased risk of cancer (of the skin, bladder, lung, kidney, nasal passages, liver or prostate) and non-cancerous effects (diabetes, cardiovascular, immunological and neurological disorders).

Lead can occur due to corrosion of lead containing household plumbing and by industrial pollution. Major toxic effects include anemia, neurological dysfunction/damage and renal impairment.

Uranium is a tasteless, colorless, odorless contaminant. Drinking water with uranium amounts exceeding 30ug/L can lead to increased cancer risk, liver damage, or both.

Copper has both long term and short term effects. Some people with short term exposure, experience gastrointestinal distress, and with long-term exposure may experience liver or kidney damage. It is typically introduced into the water from household plumbing systems.

Fluoride has been shown to reduce tooth decay in children's teeth if they receive an adequate level. The optimal concentration, as recommended by CDC is approximately 1.1 mg/L. In the range of 2.0-4.0 mg/L of fluoride, staining of tooth enamel is possible. Above 4.0 mg/L, studies have shown the possibility of skeletal fluorosis, as well as the staining of teeth.

Radon is the second leading cause of lung cancer. High levels of radon gas occur naturally in Maine soil and water, and can move up into a house from the ground. The house then traps the radon in the air inside. Radon gas can also dissolve into well water, which is then released into the air when you use the water.

What Should I Do If The Laboratory Finds Something In My Water?

If tests on your water indicate problems, the next step is to determine what type of system you need to treat the water. This can be a difficult decision because there is a wide variety of water treatment devices on the market today. Water purifiers range from relatively low-cost, simple filter devices for a kitchen faucet to more expensive, sophisticated systems that treat water from its point of entry into a home. Keep in mind, no one water treatment device can solve every problem.

Rebecca Labranche is the Laboratory Director for A & L Laboratory. A & L Laboratory specializes in drinking water analysis for both public systems and private wells throughout the State of Maine.

Editor's Note:
Since this article was first written, more drinking water contaminants have gained attention in the news.These include Per and Polyfluoroalkyl Substances (PFAS), which have recently become Federally regulated in drinking water. If you want to get your water tested and are unsure of what to request, feel free to contact our Water Nerds at hello@hydroviv.com. We can discuss your water concerns and help you prioritize which contaminants to test for.

Other Articles We Think You'll Love:

Testing your home's water for lead? Read this first!
Why a TDS meter doesn't tell you much about your home's water quality
Why does EPA allow toxic chemicals in water?

Volatile Organic Compounds (VOCs) In Drinking Water

Analies Dyjak @ Thursday, April 27, 2017 at 4:05 pm -0400

Hydroviv's Science Team

Most people are aware of Volatile Organic Chemicals (VOCs) because they are frequently discussed when selecting paint for their home, but many people don't realize that they can contaminate drinking water supplies. This article provides a broad overview of VOCs as it pertains to water, and also gives practical advice on how to protect against them if a water supply becomes contaminated.

What Are Volatile Organic Chemicals (VOCs)?

By definition, VOCs are a class of chemicals that vaporize easily at normal air temperatures. VOCs are commonly found in household and industrial products including gasoline, solvents, cleaners and degreasers, paints, inks and dyes, and pesticides. For example, gasoline is a mixture of VOCs including benzene, toluene, and other hydrocarbons, which gives gasoline it’s familiar odor.

Can VOCs Contaminate Drinking Water?

Absolutely. In fact, the US Geological Survey (USGS) found in a recent study that VOCs are present in one-fifth of the nation's water supplies. For example, benzene, (a constituent of gasoline) commonly enters groundwater when it spills or leaks out of underground fuel tanks. Other examples of commonly detected VOCs in drinking water include dichloromethane (methylene chloride), an industrial solvent; trichloroethylene, used in septic system cleaners; and tetrachloroethylene (perchloroethylene), used in the dry-cleaning industry.

How Are VOCs In Drinking Water Regulated By EPA?

Because It would be impractical and costly for municipalities to test for every potential chemical that can be categorized as a VOC, EPA regulates a subset of chemicals that commonly contaminate water supplies. For example, benzene, one rather common constituent, is regulated with a maximum contaminant level set at 0.005 milligrams per liter (parts per million) and a goal of zero in drinking water. Water analysis can be requested if there is reason to suspect the presence of a specific VOC.

Private wells are not covered by EPA's regulations and testing is typically optional. While VOCs can be detected by odor at high concentrations, laboratory analysis is the only way to measure VOCs in drinking water at the regulatory limits. We highly recommend that all people who get water from private wells get their water tested by an accredited laboratory.

How To Remove VOCs From Drinking Water

High quality water filters are the only effective way to remove Volatile Organic Compounds in water. These water filter companies (including Hydroviv) test their filters against chemicals that are selected to represent a wide range of VOCs that commonly contaminate water supplies. The NSF Standard 53 protocol for VOC reduction requires manufacturers to test against the chemicals listed in the table below:

alachlor atrazine benzene carbofuran
carbon tetrachloride chlorobenzene chloropicrin dibromochloropropane
o-dichlorobenzene p-dichlorobenzene 1,2-dichloroethane 1,1-dichloro-ethylene
cis-1,2-dichloroethylene trans-1,2-dichloroethylene 1,2-dichloro-propane cis-1,3-dichloropropylene
dinoseb endrin ethylbenzene ethylene dibromide
haloacetonitriles haloketones heptachlor epoxide hexachlorobutadiene
hexachlorocyclo-pentadiene lindane methoxychlor pentachlorophenol
simazine 1,1,2,2-tetrachloroethane tetrachloro-ethylene toluene
2,4,5-TP tribromo-acetic acid 1,2,4-trichlorobenzene 1,1,1-trichloroethane
1,1,2-trichloroethane trichloroethylene (TCE) trihalomethanes (THMs) xylenes

Table 1: List of chemicals that are part of the NSF 53 Standard Test For VOC Reduction

As always, we encourage you to reach out to our “Help No Matter What” technical support through live chat or email (support@hydroviv.com). Our team will provide science-backed advice on water quality and water filtration, even if you have no intention of buying a Hydroviv water filter. 

Other Articles We Think You'll Enjoy
5 Things to Know About Chromium 6 In Drinking Water
Why You Should Throw Out Your TDS Meter
Lead and Chromium 6 problems In Chicago's Drinking Water

5 Things To Know About Arsenic In Drinking Water

Analies Dyjak @ Saturday, April 8, 2017 at 1:27 pm -0400

Eric Roy, Ph.D.  | Scientific Founder

There has been some recent press coverage about arsenic contamination in drinking water. Predictably, our email and support line have been filled with questions on the topic. While we have written other articles in the past about well water in general, the purpose of this article is to specifically answer FAQs about health effects of arsenic in drinking water, and to dispel some myths about arsenic in drinking water.

Why Should I Care About Arsenic In Drinking Water?

Arsenic is a toxic substance that is linked to a long list of health problems in humansFor example, arsenic can cause a number of different cancers (e.g. skin, bladder, lung, liver, prostate), as well as create non-cancerous problems with cardiovascular (heart/blood vessels), pulmonary (lungs), immune, neurological (brain), and endocrine (e.g. diabetes) systems. Simply put, the health effects of arsenic in drinking water are bad news, and you can't see, taste or smell it in water.

What Are The Different Types Of Arsenic Found In Drinking Water?

Nearly all arsenic found in drinking water is inorganic. There are two types of inorganic arsenic, Arsenic(III) and Arsenic(V), and both are toxic. The ratio of the two forms depends on what part of the country you live in, and whether or not your water is chlorinated, because chlorine quickly converts Arsenic(III) to Arsenic(V). 

How Does Arsenic Contaminate Drinking Water?

While arsenic-containing pesticides can contaminate water, most arsenic contamination comes from the area's natural geology. This means that arsenic can contaminate seemingly pristine water in certain parts of the country, including private wells. The map below is from USGS and shows arsenic groundwater concentrations. In this map, you can see prevalent arsenic hot spots in places like Maine, Wisconsin, Texas, and various areas across the western part of the US.

Map Of Arsenic Concentrations In Groundwater

How Much Arsenic Is Toxic?

EPA acknowledges that there is no safe level of arsenic for drinking water (MCLG = 0), but has set a regulatory limit of 10 parts per billion (ppb) for arsenic in drinking water. When this level was negotiated, scientists were pushing for 3 ppb, but ultimately EPA decided that the cost of lowering the allowable level to 3 ppb would "not justify the benefits." We recently wrote a dedicated article on how EPA determines acceptable levels of contaminants in drinking water that you can read if you would like more information on this topic.

It's also worth pointing out that a large number of people in the US draw water from private wells, and that most well water "checks" do NOT test for arsenic. If you live in an area on the map with hot spots, we highly recommend getting arsenic testing done by a qualified water testing lab. Test kits from hardware stores are not accurate, and cheap TDS meters and "water testers" tell you nothing about arsenic. 

What Can I Do To Reduce Exposure To Arsenic?

A growing number of people are realizing that regulatory limits are not always in line with current studies, and are choosing to eliminate arsenic, lead, and chromium 6 from their drinking water, even if their city is "in compliance" with EPA regulations.

Unlike lead, which leaches into water from pipes, arsenic comes from the source water itself, so flushing pipes or replacing plumbing will not reduce arsenic concentrations. Boiling water also does NOT remove arsenic. Arsenic must be removed from water using a filter that is specifically designed to do so.

Whole House Filters

While some whole house filters can reduce arsenic levels to some extent, we don't recommend most whole house water filters due to their high cost and unnecessary filtration of water when it isn't consumed (such as flushing the toilet). Instead, we advocate for point-of-use water filters, which are more efficient and cost-effective for filtering water that is being consumed. 

In cases where arsenic levels are very high and exceed our performance specifications, we may suggest considering a specialized arsenic removal filter at your home's point of entry to bring the levels within our operating parameters. Once this is achieved, you can use a Hydroviv filter at your point of use for further arsenic reduction.

Point Of Use Filters

The most cost-effective way to remove arsenic, chromium 6, and other contaminants is through a point of use filter. When shopping for these systems, we encourage you to make sure that the filter actually filters arsenic (most don't). While we believe that our advanced under sink water filtration systems have unique benefits and use filtration media that effectively remove both Arsenic(III) and Arsenic(V), some systems that use reverse osmosis can be a good choice for people who are willing to accept the downsides. No matter what... make sure that your filter removes what you think it does!

If you have any questions about filtering arsenic from your home's water, we encourage you to take advantage of Hydroviv’s “Help No Matter What” approach to technical support, where we will help you select an effective water filter system, even if it’s not one that we sell. This free service can be reached by emailing support@hydroviv.com

Other Articles We Think You'll Enjoy:

Why Whole House Filters Are Usually A Waste Of Money
The Most Important Things To Know About Well Water
Why TDS Meters Are Largely A Marketing Gimmick