Water Quality InformationWritten By Actual Experts

RSS

Orthophosphate and Lead Contamination in Drinking Water

Analies Dyjak @ Monday, October 1, 2018 at 1:10 pm -0400

Analies Dyjak  |  Policy Nerd

Lead contamination in drinking water is a huge problem for municipalities with an older infrastructure. Lead contamination occurs when water comes in contact with lead pipes. This article discusses a common additive used to combat lead pipe corrosion.

What is Orthophosphate?

Orthophosphate is a common corrosion inhibitor used by water suppliers to prevent lead pipes from leaching. When orthophosphate water treatment is added to a water source, it reacts with lead to create a mineral-like crust inside of the lead pipe. This crust acts as a coating which prevents further lead corrosion. The use of orthophosphate treatment in drinking water became popularized in 2001, during the lead crisis in Washington, D.C. Lead contamination in many cities including D.C. and Flint, occurs when a city’s water becomes more corrosive, which can allow for lead from pipes to leach into the drinking water supply. When the lead problem initially occurred, cities such as Flint, Michigan, Durham and Greenville, North Carolina, and Jackson, Mississippi didn’t learn from D.C’s mistakes and all had lead outbreaks. 

Does Orthophosphate Fix Lead Contamination?

It certainly can. Once the protective layer is formed, cities can find that lead concentrations in the water drop by 90%. However, Orthophosphate is somewhat of a bandaid to temporarily fix the presence of lead in drinking water. For example, if the protective layer is corroded away or otherwise disturbed (e.g. in the case of a partial service line replacement or the water’s corrosivity changes), lead can leach back into the water. Finally, not all municipalities are adding orthophosphate to drinking water because of its cost. If you have any questions regarding lead prevention in drinking water, send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead In Drinking Water: What You Need To Know
Lead and Copper Rule
Things To Know Before Replacing Your Home's Lead Service Pipes

5 Things You Need To Know About Bottled Water

Analies Dyjak @ Friday, January 4, 2019 at 1:59 pm -0500

Analies Dyjak, M.A | Head of Policy and Perspectives   

Whenever severe water contamination impacts a community, people (and media outlets) tend to jump to bottled water as the only water contamination solution. The bottled water industry has managed to convince vulnerable consumers that their product is inherently safer than what’s coming out of their taps. Oftentimes, this isn’t the case. So why is bottled water bad? The reality is that bottled water is associated with a host of ethical, environmental and regulatory problems. Drinking bottled water is not a long-term solution to water contamination, and we should critically examine its role as water quality crises continue to pop up across the country. Here are our main problems with the bottled water industry to give you a better idea of why bottled water is bad.

1)  Bottled Water Companies Use The Same Source As Tap Water

According to the FDA, bottled water companies are permitted to package and sell water from municipal taps, artesian wells, mineral water, natural springs, and drilled wells. Surprisingly enough, they aren’t required to disclose the source water itself. If you’re looking for transparency, municipal systems are required to publish an annual Consumer Confidence Report (CCR) that discloses characteristics about the source water, treatment techniques, and other distribution information. The bottled water industry also frequently packages and distributes groundwater from dug wells. Groundwater can often be more susceptible to pollution than surface water because it’s not regulated by the federal government. Groundwater acts as a catchment for surface water runoff and agricultural pollution, not to mention its increased risk of arsenic contamination.

2)  Bottled Water and Tap Water Have Almost Identical Standards

People are often surprised to learn that there’s virtually no difference between the regulations for bottled water and tap water. The Environmental Protection Agency regulates tap water and the Food and Drug Administration regulates bottled water. The allowable concentrations of contaminants are identical for both, with the exception of lead. The standard for lead in bottled water is 5 parts per billion, as opposed to 15 parts per billion in tap water. This is because during bottling production, water should never come in contact with older lead service pipes the same way municipal water does. Arsenic can be present in groundwater as a result of natural weathering of bedrock. Exposure to arsenic in drinking water can result in cancers in various organs, including skin, bladder, lung, kidney, liver, and prostate. Non-cancerous health effects include neurological damage, such as peripheral neuropathy.

3)  Impacts On The Environment

It’s well-documented that single-use plastic water bottles wreak havoc on the environment. Plastics are made from petroleum, which is a fossil fuel and a non-renewable resource. Companies often tout their commitment to reducing plastic consumption by weight, but this has no bearing on the volume at which it’s produced. You may be familiar with “Trash Island,” in the Northern Pacific Ocean. This phenomenon is the result of decades of poor waste management and excessive production of various types of plastic. According to a 2016 study by the Ellen Macarthur Foundation, the ocean will contain more plastic by weight than fish by the year 2050. Polyethylene Terephthalate (PET) is the main ingredient in plastic water bottles. PET takes over 400 years to decompose in the environment and its constituents can often take longer to degrade. Chemicals like Bisphenol A (BPA) have since been phased out of plastic production, but are still very much present in the environment and will continue to be released as older plastics degrade.

4)  False Advertising

Marketing schemes deceive consumers into believing that companies use pristine source water. The packaging uses carefully curated images of mountain-top creeks and streams to suggest pure, untainted products. The reality is bottled water hardly ever comes from the sources depicted on the label.

5)  Ethical Dilemma

Nestle, a company with a long track record of unscrupulous business practices, owns deep aquifers throughout California, a state which has been experiencing drought-like conditions for several decades. The expensive equipment purchased by Nestle allows the company to extract water in a way that tribes and municipalities cannot afford to do. Similar companies have been known to use their purchasing power to acquire land, pushing tribes and municipalities out of the conversation. Problems arise when drought-stricken or contaminated communities are unable to afford the same resources as bottled water companies.

Our Take:

While bottled water offers some measure of immediate relief to a severe drinking water crisis, it is in no way a long-term water contamination solution. Companies often sell the same water that’s feeding municipal systems. Not to mention, EPA and FDA have almost identical regulations for both tap and bottled water. There’s also an inherent cost associated with bottled water, which varies depending on the brand. Finally, a huge part of why bottled water is bad is that scientific data confirms the importance of reducing plastic pollution on a global scale. Municipal providers offer greater transparency and are required to disclose information about the source water.

Other Articles We Think You Might Enjoy:
Microplastics In Water: What You Need To Know
Endocrine Disruptors In Drinking Water
Water Conservation and Water Quality In The Sports Industry

Chemours To Pay $13 Million to NC DEQ for PFAS Pollution

Analies Dyjak @ Wednesday, December 5, 2018 at 12:39 pm -0500

Analies Dyjak  |  Policy Nerd

Our Water Nerds have been closely following the environmental and public health disaster in North Carolina for a while now. This article provides an overview of the recent consent order, and some background information on what's going on in North Carolina. 

The Chemours Plant in Fayetteville, North Carolina has been discharging various per and polyfluoroalkyl substances (also known as PFAS) for decades. PFAS are a category of emerging contaminants that are found in some of the most popular consumer products such as Scotchgard, Gore-Tex, Teflon, and other stain/water resistant products. PFAS is also an important ingredient in firefighting foam, which has been a major source of water contamination throughout the country. In recent years, a replacement chemical for PFOA called GenX has dominated the conversation, particularly in North Carolina. In November 2018, EPA admitted that GenX is “suggestive” of cancer, which is significant for residents who have been unknowingly exposed.

$13 Million Awarded to NCDEQ

Chemours is awarding $13 million to the North Carolina Department of Environmental Quality in the form of civil penalties and investigative costs. In comparison to other PFAS-related settlements, this is by far one of the smallest. In early 2018, 3M paid the state of Minnesota $850 Million in environmental degradation. In 2017, DuPont was involved in a $670.7 million settlement in the Mid-Ohio Valley region for PFAS water contamination.

Overview Of The Consent Order

The Consent Order clearly lays out a timeline of air emission goals and wastewater discharge stipulations. Chemours’ National Pollution Discharge Elimination System (NPDES) permit was revoked in early 2017 and the new Consent Order prohibits any sort of wastewater discharge until a NPDES permit is reallocated. Chemours must also create laboratory methods and test standards for all PFAS compounds released by the Fayetteville plant. Basic remediation plans must be agreed upon by the North Carolina Department of Environmental Quality, North Carolina River Keepers, and Chemours. Chemours will also pay for water filtration for water filtration for residents on private wells. Concentrations of GenX must be above 140 parts per trillion or any updated health advisory, in order to be eligible for a filter. GenX is not the only PFAS compound detected in the Cape Fear area, and the consent order addresses that. the Residents can also be eligible for filtration if other PFAS compounds are detected in well water over 10 parts per trillion individually, and 70 parts per trillion combined. NCDEQ is currently seeking public comment regarding the recent settlement.

How Are Cape Fear Residents Responding?

Cape Fear Public Utility Authority (CFPUA) created a comprehensive breakdown of the Chemours consent order. The utility provider acknowledged that the settlement did not go far enough to cover the scope of GenX and PFAS water contamination in the Cape Fear area. In a press release, CFPUA talked about how the consent order did not acknowledge the PFAS sediment pollution at the bottom of the Cape Fear River. Any sort of dredge or fill could disturb the sediment and create GenX concentrations to sky rocket in drinking water. Local non-profit groups are also not in agreement with the Chemours settlement because they believe it does not go far enough to mitigate the scope of PFAS water contamination. The current consent order places most of the mitigative costs water utility providers which would of course be paid for by taxpayers.

Our Take:

In early November of 2018, EPA released a draft toxicity report for GenX, proposing a threshold of 80 parts per trillion for drinking water. The concentration deemed “safe” by North Carolina and Chemours is almost two times higher than what the EPA is proposing as safe. Health and regulatory agencies know very little about the adverse health effects of GenX and other PFAS compounds. It’s up to consumers to decide the best course of action to protect themselves and their families.

Other Articles We Think You Might Enjoy:
EPA Admits That GenX Is Linked To Cancer
Military Bases and PFAS
Toxicological Profile For PFAS

What You Need To Know About Groundwater

Analies Dyjak @ Sunday, January 21, 2018 at 11:53 pm -0500

Analies Dyjak  |  Hydroviv Policy Analyst

Updated 3/13/2024

What Is Groundwater?

Groundwater is submerged water located among soils, cracks and pores, beneath the surface of the earth. Groundwater travels down a gradient through geological formations and is stored in aquifers. Aquifers act as holding tanks for readily available drinking water. Rain patterns, hydrology, and ice/snow melt are the primary factors that affect how quickly a groundwater supply is replenished, also known as recharge. The recharge rate is how quickly aquifers are able to replenish the groundwater level after an influx of water.

Why Is Groundwater So Important?

It’s simple: It supplies drinking water to millions of Americans whose municipalities draw from groundwater sources (e.g. Miami, Tucson, Lincoln), as well as the 15% of people living in the U.S that use private wells as their drinking water source. In fact, the US Geological Survey estimates that 140 million people, or about 40% of the nation's population get their drinking water from groundwater sources, which include both municipal (city) water and private wells. Groundwater is also a major supplier of surface water in oceans, lakes, streams, ponds and wetlands. Crucial habitats and ecosystems are dependent on an influx of healthy groundwater, as well as surface water for public drinking water usage.

How Can Groundwater Become Polluted?

There are two major ways that groundwater can accumulate toxic chemicals:

  1. Natural-occurring chemicals: In some regions of the country, things like arsenic, radium, and uranium are naturally found in the rocks that come in contact with groundwater. 
  2. Man-made Pollution: Groundwater can also become contaminated by human activities including: agriculture, industry, landfills, localized pollution, and anything that involves discharging effluent into a surrounding waterway. Polluted water seeps through soil until it reaches the water table, where it can travel freely depending on the hydrology and permeability of an aquifer. Contaminants that are particularly soluble in water (such as PFAS and 1,4-dioxane) can migrate into groundwater aquifers that serve as drinking water sources. Polluted groundwater then slowly travels through aquifers until reaching nearby surface water or being pumped through a well and consumed as drinking water.

Are There Federal Regulations That Protect Groundwater?

The Ground Water Rule was created in 2006 by the U.S Environmental Protection Agency to improve and inspect drinking water sources that may be potentially polluted by fecal contamination. This rule does not address human-made toxic and carcinogenic groundwater contamination. Additionally, the Ground Water Rule is specific to public water systems and excludes private wells.

The Federal Government does not oversee or have anything to do with regulating private wells. In fact, private wells aren’t even regulated by the Safe Drinking Water Act. This means that it’s at the discretion of the homeowner to determine if their private well water is safe for consumption. Testing private well water is extremely expensive and at times ineffective if the contamination type and concentration is continuously changing. Additionally, The Federal Government doesn’t regulate many of the contaminants in questions today.

How Can I Learn More About My Water?

If you have any questions about groundwater and regional water information, we encourage you to take advantage of Hydroviv’s “Help No Matter What” approach to technical support, where we will help you, even if you have no desire to purchase one of our water filters. Truth be told, we have access to a much larger pool of water quality data than is easily accessible to the general public. You can reach our water nerds by emailing hello@hydroviv.com or opening a Live Chat window in the bottom corner of this screen.

Other Articles We Think You'll Enjoy

Should I Worry About Arsenic Contamination If I Have A Groundwater Source?
What Do I Need To Know About Recent News Reports On Radium?
How Do I Know If My Well Is Contaminated?

Surface Water: What You Need To Know

Analies Dyjak @ Tuesday, September 4, 2018 at 11:56 am -0400
Surface water is an extremely important natural resource. From the water we drink, give to our pets, and use for recreation, we are dependent on its various uses. Surface water is continuously being threatened by anthropogenic activities. It’s extremely difficult and costly for municipal treatment facilities to keep up with new contaminants that are polluting waterways every single day. Additionally, federal regulations don’t reflect the large scope of surface water pollution. This blog post discusses the various threats to surface water and why humans should care.