Water Quality InformationWritten By Actual Experts

RSS

America's Water Infrastructure Act of 2018

Analies Dyjak @ Tuesday, October 16, 2018 at 2:21 pm -0400

Analies Dyjak  |  Policy Nerd

America’s Water Infrastructure Act (AWIA) of 2018 passed in the Senate on October 10th, 2018 in a 99-1 majority vote. The purpose of the bill is to update existing marine and freshwater infrastructure throughout the United States. Unfortunately, AWIA fails to address emerging contaminants that are currently impacting communities around the country. This article provides a brief overview of the bill, some of its major gaps, and what we think are priority drinking water issues.

What Does America’s Water Infrastructure Act of 2018 Include?

Flood Control Management:

Aside from the direct immediate threat from a storm surge, flooding can have serious impacts after the fact. An increased threat of biological contamination into a water supply, non-point source pollution, and damages to water distribution infrastructure are just some of the long term implications from flooding. AWIA plans to reauthorize and increase funding to reduce impacts from climate related events, as well as restoration projects. Projects impacted by this water legislation include dam restoration, funding for levee systems, and stormwater capture.

Reauthorization of the Water Infrastructure Finance and Innovation Act (WIFIA):

Under WIFIA, states that are eligible can apply for Clean Water State Revolving Funds and Drinking Water State Revolving Funds. WIFIA also includes development and implementation activities, such as lead service line replacements. AWIA plans to reauthorize funding for these programs.

Reauthorization of the Drinking Water State Revolving Fund (DWSRF):

Through the DWSRF, states can receive funding for various types of water-related projects. States are then required to prioritize projects that; address issues that pose a serious threat to human health, are necessary for a water system to reach compliance under the Safe Drinking Water Act, and assist high-risk water systems. AWIA plans to reauthorize funding for this program.

Our Take:

There’s no question that updating water infrastructure in the United States is completely necessary. However, the 2018 Water Infrastructure Act will not create meaningful changes to drinking water. A majority of the bill aims to reauthorize existing provisions, and make minor adjustments to certain acts. AWIA emphasizes the level at which policies address drinking water quality in this country: poorly. The bill reiterates the status quo, with zero attention to the new and emerging contaminants that are violently impacting communities around the country. Chromium 6, Per and Polyfluoroalkyl Substances (PFAS), and Perchlorate are all industrial contaminants that were not touched upon in this bill. AWIA is also far too broad in scope. The provisions combined marine with freshwater infrastructure, without strictly focusing attention on drinking water. 

Other Articles We Think You Might Enjoy:
Lead and Copper Rule: What You Need To Know
PFAS In Drinking Water
 What Does "Safe" Drinking Water Actually Mean?

Problems We Found With Portland, Oregon Drinking Water

Analies Dyjak @ Friday, July 27, 2018 at 2:51 pm -0400


Analies Dyjak, M.A.  |  Policy Nerd
Updated August 2, 2019 to include current data

For Hydroviv’s assessment of Portland, Oregon drinking water quality, our Water Nerds collected test data from the Portland Water Bureau, the U.S. Environmental Protection Agency, and other available data. We cross referenced these data with toxicity studies in scientific and medical literature. The water filters that we sell at Hydroviv are optimized to filter out contaminants that are found in Portland’s drinking water.

Where Does Portland, Oregon Source Its Drinking Water?

Portland sources its drinking water from the Bull Run River which is located in Mt. Hood National Forest. Portland also draws drinking water from the Columbia South Shore Well Field, which is made up of 26 groundwater wells. The wells draw water from three different aquifers located on the perimeter of the Columbia River.

Lead In Portland’s Drinking Water

Lead contamination is by far of biggest concern in Portland, Oregon drinking water. Not only are the city wide lead levels among the highest in the country, lead contamination has been getting worse in recent years. According to the most recent data, the 90th percentile for lead in Portland drinking water is 11.9 parts per billion. This is just under the outdated Federal Action Level of 15 parts per billion. In recent years, the 90th percentile in Portland has exceeded the Federal Action Level. Additionally, to put things in perspective, EPA, CDC, and American Academy of Pediatrics all recognize that there is no safe level of lead for children.

The goal of annual Consumer Confidence Reports is to be as transparent as possible so that residents can be informed about problems with their drinking water. Unfortunately, Portland’s report was written in a way that leaves consumers confused when it comes to lead. When reading through the report, lead levels for the treated source water are displayed prominently. Of course, these lead levels are very low, because lead contaminates water as it flows through lead containing pipes found in the distribution system and the home’s plumbing. The relevant data for samples collected at the tap are buried in a small table on the next to last page, separate from the other contaminants.

Disinfection Byproducts In Portland’s Drinking Water

Portland’s municipal water also had high concentrations of Disinfection Byproducts or DBPs. Concentrations were detected as high as 44.5 parts per billion, and averaged 37.7 parts per billion for Total Trihalomethanes (TTHMs). Haloacetic Acids-5 (HAA5) concentrations were as high as 51.2 parts per billion and averaged 37.7 parts per billion. For a bit of perspective, EPA's Maximum Contaminant Level for TTHMs is 80 parts per billion and 60 parts per billion for HAA5. While Portland's water quality chemical concentrations are technically in compliance, these levels are definitely high. Disinfection Byproducts are a category of emerging contaminants which means they have been detected in drinking water but the risk to human health is unknown. DBPs are formed when chlorine-based disinfectants are routinely added to the water supply to kill bacteria. EPA has stated that they have been linked to an increased risk of bladder cancer, as well as kidney, liver, and central nervous system problems. Some disinfection byproducts have almost no toxicity, but others have been associated with cancer, reproductive problems, and developmental issues in laboratory animals. 

Chloramine In Portland’s Drinking Water

While most municipalities use chlorine as the primary drinking water disinfectant, Portland’s drinking water is disinfected with chloramine. Chloramine is primarily responsible for what many customers report as the “bad taste” or “pool smell” of tap water. Unlike chlorine, chloramine does not dissipate if a container of water is left in the refrigerator overnight. Most one-size-fits-all water filters use filtration media that doesn’t do a great job removing chloramine, but the filters that we design and build at Hydroviv for Portland's water problems use a special filtration media that is purposefully designed to remove chloramine.

It’s important to note that only a handful of contaminants are required to be included in annual Consumer Confidence Reports, and that there are hundreds of potentially harmful unregulated contaminants that aren’t accounted for. If you’re interested in learning more about water filters that have been optimized for Portland’s tap water quality, feel free to visit www.hydroviv.com to talk to a Water Nerd on our live chat feature or send us an email at hello@hydroviv.com.

Other Articles We Think You Might Enjoy:
Lead Contamination In Drinking Water
Disinfection Byproducts In Drinking Water: What You Need To Know
Chlorine Vs. Chloramine: What You Need To Know

Superfund: Spring Park, Minnesota

Analies Dyjak @ Thursday, June 14, 2018 at 3:39 pm -0400

Analies Dyjak  |  Policy Nerd

This week, Hydroviv is highlighting the six new National Priorities List (NPL) sites under the EPA Superfund program. Superfund sites are home to high levels of hazardous soil and groundwater contamination from years of improper disposal techniques. If you’d like to learn more about the ins and out of Superfund, check out our recap HERE. The next Superfund site that we’ll be discussing is located in Spring Park, Minnesota. 

Spring Park, Minnesota is home to one of the six newly designated Superfund sites. The town’s municipal well field is contaminated with several industrial solvents such as trichloroethylene (TCE), 1,2-dichloroethylene (DCE) and vinyl chloride. There are 1,673 residents in Spring Park, all of which are serviced by the same municipal well field. Two of the three municipal wells currently exceed Maximum Contaminant Levels for TCE. EPA has stated that the source of the contamination is unknown, but all contaminants are frequently used as industrial solvents.

If you live near a Superfund site and are concerned about your water, drop us an email at hello@hydroviv.com or visit hydroviv.com and use our live chat feature. Hydroviv is staffed with scientists and policy experts that can help you make sense of your water and find an effective filter, even if it isn’t one we sell.

Other Articles We Think You Might Enjoy:
Newly Designated Superfund Sites 
What is Superfund? 
Superfund: San Antonio


The Ins And Outs Of Drinking Water Regulation

Analies Dyjak @ Wednesday, August 29, 2018 at 2:06 pm -0400

Analies Dyjak  |  Policy Nerd

As emerging contaminants like GenX, PFOA, and PFOS have been popping up in news headlines all over the country, there has been some confusion as to how these unregulated contaminants are addressed at the federal level. While it may seem like the Unregulated Contaminant Monitoring Rule is in place to protect people from any and all emerging contaminants, it is not a hard and fast rule designed to expedite regulation -- rather, it is a lengthy process that unfortunately has not resulted in many real-world changes. This article discusses aspects of the Unregulated Contaminant Monitoring Rule that may surprise you, and explains how drinking water contaminants become regulated in the United States.

What Is The Unregulated Contaminant Monitoring Rule?

The Unregulated Contaminant Monitoring Rule (UCMR) was created as a part of the 1996 Amendments of the Safe Drinking Water Act (SDWA). SDWA regulates all public drinking water systems throughout the United States. It establishes National Primary Drinking Water Regulations for 90 contaminants, which are known as Maximum Contaminant Levels (MCLs). UCMR is the process that EPA uses to regulate contaminants. However, it has ultimately failed to create meaningful changes in water quality regulation.

How Are Drinking Water Contaminants Regulated In The United States?

Under the Safe Drinking Water Act, EPA typically follows a specific process when determining whether to regulate certain contaminants. Every 5 years, EPA publishes a list of 30 contaminants under the UCMR called the Contaminant Candidate List (CCL). Contaminants on this list are not regulated by National Primary Drinking Water Regulations, but are most likely present in public drinking water systems. These contaminants are placed on the list because they pose the greatest public health risk through ingestion of drinking water. EPA’s job is to whittle down the list of 30 to a handful of priority contaminants. Of that group of priority contaminants, EPA must make a regulatory determination for at least 5. EPA can choose to regulate all, some, or none of these contaminants.

What Is The Criteria For UCMR Regulatory Determination?

  1. EPA must determine that the contaminant does/does not cause adverse health effects in humans.
  2. EPA must determine if the contaminant will be present in public drinking water systems at an unsafe concentration.
  3. EPA Administrator must determine if regulating the contaminant will reduce adverse health effects in humans.

Does A Contaminant Have To Be On The CCL To Become Regulated?

No. EPA is not limited to regulating contaminants that are on the current CCL. EPA can consider other contaminants if they present a serious public health concern in drinking water.

Does the Unregulated Contaminant Monitoring Rule Set Drinking Water Standards?

No. UCMR/CCL contaminants are not subject to regulation. As a part of the UCMR program, EPA establishes Minimum Reporting Levels (MRLs) for each contaminant. National Water Quality Laboratory defines MRLs as ”the smallest measured concentration of a substance that can be reliably measured by using a given analytical method.” MRLs are not to be confused with Maximum Contaminant Levels (MCLs), which are enforceable regulatory thresholds for drinking water contamination.

How Are Contaminants Added To The Contaminant Candidate List?

In order for a contaminant to be considered for the EPA UCMR, it must be registered in the United States and have an analytical reference standard. The National Drinking Water Advisory Council and National Academy of Sciences are instrumental in determining which contaminants should be added to the list. After UCMR 2, EPA allowed for public participation in the CCL decision making process. Additionally, a contaminant can be added to multiple CCLs. For example, Perchlorate was on CCL 1, CCL 2, and CCL 3 before it was regulated.

Common Contaminants Considered Under The Unregulated Contaminant Monitoring Rule

The Third Unregulated Contaminant Monitoring Rule (UCMR 3) was published in May of 2012, and it included two chemicals that you might be familiar with. Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) were both on Contaminant Candidate List 3. Both of these contaminants fall under a broad category of contaminants called PFAS, which are found in heat resistant and non-stick products such as Scotchguard, Teflon, and fire fighting foam. Unfortunately, neither PFOS or PFOA made it to the Regulatory Determination Assessment Phase, and both were removed from regulatory consideration.

What Is The Contaminant Candidate List?

The Fourth Unregulated Contaminant Monitoring Rule (UCMR 4) is the current batch of contaminants that’s under consideration for a regulatory determination. It was published in December of 2016, and includes nine cyanotoxins, two metals, nine pesticides, three disinfection byproducts, three alcohols, and three semivolatile organic chemicals.

Our Take:

While the 1996 Safe Drinking Water Act Amendments provided regulatory due diligence, they also created an unbearably extensive review process. Industrial manufacturing companies are unrestricted when it comes to developing new products, and chemicals pushed to the market are essentially “safe” until proven otherwise. This sort of regulatory approach comes at a serious cost to human health. Chromium 6 is the best example of the flawed regulatory framework for drinking water. The 2000 blockbuster movie “Erin Brockovich” discussed the dangerous toxicity of Chromium 6 and it still isn’t regulated, nor does it appear on the most recent Contaminant Candidate List (CCL 4). The most important takeaway from the EPA UCMR is that once a new CCL is published, the contaminants on the old list don’t just go away. Millions of Americans are forced to deal with adverse health effects because “scientific uncertainty” didn’t allow for regulation. This regulatory framework can't keep up with the thousands of new contaminants that are currently present in the environment.

Other Articles We Think You Might Enjoy:
Municipal Drinking Water Compliance: What You Need To Know
Why Is The Toxic Substances Control Act Important For Drinking Water?
Key Things To Know About Getting Your Water Tested

What Is "Safe" Drinking Water?

Analies Dyjak @ Wednesday, October 3, 2018 at 2:04 pm -0400

Analies Dyjak  |  Policy Nerd

One of the most frequently asked questions that our Water Nerds get asked is, “is my water safe?” Unfortunately, the answer to this isn’t all that cut and dry. We wanted to make a quick video explaining what “safe” really means.

What Does "Safe" Drinking Water Actually Mean?

“Safe” is a regulatory definition that means your drinking water is in compliance with standards set by the decades-old Safe Drinking Water Act (SDWA). There are only 90 contaminants regulated under this act, and thousands of others that are not. Unless mandated by the state, municipalities don't account for any unregulated contaminants. According to EPA, if the levels for each regulated pollutant meet EPA’s standard, then the drinking water is in compliance and therefore "safe". This doesn't take into account the presence of unregulated contaminants such as chromium 6 or 1,4-dioxane. On April 10, 2024, the US EPA has announced drinking water standards to limit exposure to 6 types of PFAS chemicals.

Can States Regulate Drinking Water?

States can create their own standards for regulated and unregulated contaminants, California being the best example. Most states typically don’t prioritize setting drinking water standards, or can’t afford to do so. Also, setting more stringent safe drinking water standards means that municipalities are responsible for complying with new allowable limits. This often means purchasing detection equipment as well as expensive filtration technology. More often than not, fitting these huge expenses into a local budget is impossible, and states take that into consideration when setting new standards. 

Defining Legal Jargon

It’s important to understand the difference between enforceable and non-enforceable regulatory terms. Non-enforceable terms include; Lifetime Health Advisory Levels, Public Health Goals, Minimum Risk Levels, and Maximum Contaminant Level Goals. All of these are non-enforceable terms, and therefore municipal water treatment facilities do not need to comply with them. The only enforceable safe drinking water standards are Maximum Contaminant Levels and Action Levels. 

Why are Enforceable and Non-Enforceable Standards Different?

Often, EPA is aware that their enforcement standards are set higher than what toxicologists consider to be safe. To address this, EPA creates Maximum Contaminant Level Goals (MCLGs) which refer to “the maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health would occur...” The MCLGs are non-enforceable levels, and enforcement is only to MCLs (Maximum Contaminant Levels). 

In 2001, EPA set an enforceable Maximum Contaminant Level (MCL) of 10 parts per billion for Arsenic in drinking water. That same year, EPA adopted an MCLG of 0 parts per billion. This was EPA’s way of acknowledging that there really is no safe level of Arsenic in drinking water. EPA is unable to adopt a lower threshold because municipal water systems across the country would be out of compliance. EPA has to balance the cost imposed onto water municipalities, with the benefits associated with human health.

This same principle goes for contaminants with health advisories. EPA previously set a lifetime health advisory of 70 parts per trillion for PFOA. Soon after, the Center for Disease Control recommended reducing the advisory level to 20 parts per trillion for the same contaminant. Finally, there are several health and regulatory agencies that understand that federal limits are set way over a safe threshold. At Hydroviv, we look at toxicological data instead of regulatory data when determining if your water is safe. We prefer to make recommendations about what doctors and pediatricians say is safe.

In Summary

That was a lot of information so here’s a recap! When municipalities label water as “safe,” they’re only referring to the handful of regulated contaminants. There’s a lot of regulatory jargon that might make it hard to understand the difference between the recommended monitoring level and the enforceable monitoring level. And finally, what regulations say and what toxicologists say is very different in terms of “safe” levels. At Hydroviv, we look at toxicological data instead of regulatory data. We prefer to make recommendations about what doctors and pediatricians say is safe.

Other Articles We Think You Might Enjoy: 
Is Ionized Alkaline Water a Scam?
5 Things To Know About Arsenic In Drinking Water
Why Does EPA Allow "Acceptable" Amounts of Toxic Substances In Drinking Water?