Water Quality InformationWritten By Actual Experts

RSS

Will Water Filters From the Musk Foundation Remove Lead?

Analies Dyjak @ Tuesday, October 9, 2018 at 4:02 pm -0400

Analies Dyjak | Policy Nerd

October 4, 2018- Elon Musk and The Musk Foundation confirmed a donation of $480,350 to Flint, Michigan Community Schools in hopes of addressing lead contamination in drinking water. Flint is one of many school districts across the country that has been working hard to generate long-term solutions for lead contamination in drinking water. This article examines whether the proposed filtration technology will effectively remove lead from drinking water. 

How Will The Funding Be Used?

Musk initially announced the filters would comply with FDA’s 5 parts per billion standard (which is actually the standard for lead in bottled water), instead of EPA’s 15 part per billion Action Level. While definitely lower than EPA's threshold, the American Academy of Pediatrics and Center for Disease Control have both acknowledged that there is no safe level of lead for children. The Musk Foundation has not released the exact type of water filters Flint, Michigan Community Schools plans to use. Press releases have indicated some type of ultraviolet filtration system. 

What Is UV Water Filtration?

Ultraviolet filtration eliminates biological contamination from drinking water. This includes bacteria, viruses, and harmful microorganisms like E.coli. The idea behind UV filtration is it prevents microorganisms from reproducing, by striking each individual cell. It’s comparable to and often more effective than using chlorine to kill bacterial contamination.

Does UV Filtration Filter Lead?

No. While UV filters are great at removing biological contamination from drinking water, they have several limitations. UV filters by themselves are not able to remove chemical contaminants including Volatile Organic Compounds, chlorine, lead, mercury and other heavy metals. To remove chemical contaminants (including lead), a UV-based system would need to be paired with lead removal media or reverse osmosis.

Our Take

Contrary to a lot of media reports, UV filters do not remove lead from water, so we're hoping that the UV is paired with a system that removes lead. We also hope that the filters are installed at the point of use, because water treated by a point of entry filter can accumulate lead in any pipe "downstream" of the filtration unit. 

Other Article We Think You Might Enjoy:
Why Are So Many Schools Testing Positive For Lead In Drinking Water?
Volatile Organic Compounds: What You Need To Know
Lead In Drinking Water
Heavy Metal Toxicity and Contamination

Personalized Water Filters

Analies Dyjak @ Tuesday, April 9, 2019 at 12:20 pm -0400

Why Optimization Matters

Have you every traveled to a different city and noticed that the water tastes different? That’s because the water chemistry is different, and more importantly, the problems present in the water are different too.

Around the country, millions of U.S. households have contaminants in their water that exceed public health goals, but the individual contaminates vary significantly state by state and even zip code by zip code. The issues in your water can be impacted by a variety of factors including the age of your home and city’s infrastructure, the natural geology of the region, and your home’s proximity to industrial sites, farms and military bases. Cities with older infrastructure like Pittsburg, Pennsylvania, and Jackson, Mississippi, for example, face issues with lead contamination, while new developments in the American Southwest may be lead-free, but record unsafe concentrations of arsenic.

To address the unique issues in your water, our Water Nerds analyze water quality reports from local, county, state, federal and academic sources, and then build a customized filter designed to match and screen out the specific contaminates and bad-tasting chemicals coming out of your tap. The result is a hyper-targeted and long-lasting filter designed to keep your water safe and tasting great.

Here are a few examples of how water differs around the country:

    • Lead: Lead contaminates tap water differently than most pollutants, because lead comes from the plumbing, not the water supply. Many neighborhoods in older cities have lead-containing service pipes that connect water mains to residential plumbing. Homes with pipes installed before 1986 often also have lead-containing solder. Lead can enter the water supply when municipal corrosion controls fail (what happened in Flint, Michigan) or when water sits stagnant in pipes for long periods of time. Lead contamination is a problem in all major U.S. cities, but there have been significant issues reported recently in Newark, Pittsburgh, Nashville and New York City. Many common pitcher filters do not remove lead.Learn more>
    • Arsenic: Arsenic is a naturally occurring toxic heavy metal that leaches into groundwater from surrounding rocks. Areas of the country where arsenic levels are high include Maine, Texas and much of the Southwest. Most common pitchers and fridge filters do not remove arsenic. Learn more>
    • Chromium-6: Chromium-6, the cancer-causing chemical at the center of the Erin Brockovich story, is still used in a number of industrial processes including steel production, leather tanning, and textile manufacturing. It can enter local rivers and groundwater through waste, and despite notable media attention is still not well regulated. Homes located near current or former industrial facilities are most at risk. Learn more>

Chlorine vs. Chloramine:

Most municipalities around the country use chorine to disinfect their local water supply, but some, including our hometown of Washington, D.C., use chloramine. While both are safe at the levels used, neither taste very good. Most common filters are designed to remove only chlorine, but Hydroviv’s system is tailored to match whichever is used in your hometown, giving you the best-tasting results. Learn more>


Learn more about our and get the best solution for your water.

Recent Lead Problems In Schools: Montgomery County, Maryland

Emma Schultz @ Thursday, April 5, 2018 at 4:30 pm -0400

Emma Schultz, M.S.

Many schools across the country have recently made the news for lead contamination in water, often at dangerously high levels. Since the Flint, Michigan water crisis brought lead contamination and lead poisoning into the spotlight in 2015, there has been a push to increase water testing in schools, for good reason. It’s unlikely that these high test results are new; it is much more likely that this has been an ongoing undetected problem. The U.S. Environmental Protection Agency (EPA) estimates that 90,000 public schools (as well as half a million child care facilities) are not regulated under the Safe Drinking Water Act due to utilizing a municipal water utility. While these statistics are dated (2002), they are still referenced by EPA. Since the utility is the responsible party for testing water, the school itself is not required to test, unless there are more stringent local laws or they voluntarily choose to do so. Most do not, or if they do, their results may not be reflective of normal lead levels. Water frequently stagnates in school pipes, due to nights, weekends, and summers where water usage is drastically diminished. That stagnation leads to leaching of lead, and therefore lead accumulation, when there are lead pipes or lead-containing valves and fittings. Many public schools across the country have an aging infrastructure, and with age comes the increased likelihood of lead-containing plumbing.


It is important to note that there is no such thing as a safe level of lead in drinking water. No level of lead is safe, especially when it comes to children, who are most sensitive to lead poisoning. The EPA limit of 15 parts per billion, set in 1991, is much higher than EPA and CDC have admitted is safe (they agree, there is no safe level of lead). In addition, 10% of samples are legally allowed to exceed the 15 ppb threshold without resulting in any utility violations. In contrast, The American Academy of Pediatrics proposes that lead in school drinking water should not exceed 1 ppb.

Lead Contamination In Montgomery County, Maryland Schools

Maryland’s governor, Larry Hogan, signed legislation in May 2017 mandating occasional testing of drinking water faucets in the state’s public and private schools. Montgomery County Public Schools (MCPS) began testing their 205 schools in February 2018, with an anticipated finish date of June 30th. Of their 205 facilities, drinking water test reports have been released so far for 21 schools.

While the nationwide Action Level for lead in municipal drinking water, as established by EPA, is 15 parts per billion, the Action Level for faucets in Maryland’s schools is set at 20 ppb. This is an amount agreed to by EPA and the Maryland Department of the Environment, and it is also the amount recommended under EPA’s voluntary guidance for schools utilizing their own water supply per the 1991 Lead and Copper Rule.

Of the 21 MCPS schools with released results, 12 have test results with lead levels higher than 20 ppb. Some of these violations come from faucets that students do not normally interact with, though several may be used during food preparation. Test results, broken down by school, are as follows:


School

Individual Tap Results

Gaithersburg Elementary

2 classroom fountains tested above 20 ppb, at 83.6 and a staggering 253 ppb. Many fountains and faucets tested at <1 ppb. Other results varied from 1-13.9 ppb.

New Hampshire Estates Elementary

1 classroom fountain tested above 20 ppb, at 42.5 ppb. Many of the taps tested at <1 ppb, with some faucets and fountains varying from 1-11 ppb.

Pine Crest Elementary

2 taps tested above 20 ppb: one classroom fountain at 28.4 ppb, and an office faucet at 31.9 ppb. Many fountains and faucets tested at <1 ppb. Other results ranged from 1-12.8 ppb.

Rock View Elementary

1 classroom faucet tested above 20 ppb, at 40.6 ppb. The majority of taps tested at <1 ppb, with no other taps testing above 4.2 ppb. This school overall tested at very low lead levels, with one anomaly.

Rolling Terrace Elementary

2 taps tested above 20 ppb: one classroom faucet at 21.6 ppb, and a classroom fountain at 21.9 ppb. Many of the fountains and faucets tested at <1 ppb. Other results varied, with two faucets testing above 10 ppb, at 10.8 and 11.6 ppb.

Strathmore Elementary

2 faucets tested above 20 ppb: one classroom faucet at 30.3 ppb, and a kitchen faucet at 51.8 ppb. While a few classrooms tested at <1 ppb, most did not, with other results as high as 18.4, 10, and 16 ppb.

Summit Hill Elementary

2 classroom faucets tested above 20 ppb, at 32.4 and 21.5 ppb. Some of the taps tested at <1 ppb, with other results varying from 1-16.1 ppb. Classroom 5 had a faucet test at 16.1 ppb and a fountain test at 15.3 ppb.

Viers Mill Elementary

1 classroom faucet tested above 20 ppb, at 59.9 ppb. Many of the fountains and faucets tested at <1 ppb. Other results varied from 1-10.2 ppb.

Eastern Middle

4 faucets tested above 20 ppb, at 56.6, 24.2, 64.9, and 34.9 ppb. Some taps tested at <1 ppb, with others ranging from 1-17.7 ppb.

Parkland Middle

1 kitchen faucet tested above 20 ppb, at 33.9 ppb. The majority of taps tested at <1 ppb, with no other taps testing above 6 ppb. This school overall tested at very low lead levels, with one anomaly.

Sligo Middle

2 faucets tested above 20 ppb, a break room faucet at 50.6 ppb, and a kitchen faucet at 29 ppb. Some taps tested at <1 ppb, and no other taps tested above 5 ppb. This school overall tested at very low lead levels, with two anomalies.

Northwood High

1 workroom faucet tested above 20 ppb, at 128 ppb. The majority of taps tested at <1 ppb, with others ranging from 1-14.7 ppb.


While the remaining schools tested thus far are considered “safe” from high lead levels according to protocol, 19 of the 21 schools had test results above 10 ppb. For example, a water fountain in the Kindergarten area of Rosemont Elementary tested at 10.9 ppb, and a fountain in the music area of Washington Grove Elementary tested at 19.8 ppb.

Laytonsville Elementary, constructed in 1951 (and renovated in 1989, prior to the 1991 Lead and Copper Rule) had the following test results, which are perhaps most concerning of the schools technically considered to be “safe.” Several classroom faucets were found to have 15.7, 17.7, and 19.6 ppb of lead, while there were water fountains that tested at 13.9, 12.3, and 11.1 ppb. The average amount of lead across all Laytonsville Elementary faucets was over 5 ppb, while the average across all water fountains was 4.27 ppb. This suggests that the drinking water at Laytonsville Elementary may be more harmful to children than several of the schools that have made the news following the release of these test results. Also harmful to these children and their parents are news sources who have reported misleadingly on the story that “nine schools’ water tests did not show any elevated level of lead [including] Laytonsville E.S.” Once again, that there is no safe level of lead in drinking water, especially for children.

More test results should be released from MCPS soon.

Other Articles We Think You'll Enjoy

Why are so many schools testing positive for lead?
How does lead enter tap water?


Digging Into The Environmental Working Group Tap Water Database

Analies Dyjak @ Saturday, July 29, 2017 at 6:16 pm -0400

Eric Roy, Ph.D.  |  Scientific Founder

This past week, the Environmental Working Group (EWG) released a website where people punch in their zip code, and view contaminants found in their water. As a company that uses water quality data to optimize each customer’s water filter, we applaud EWG for putting in the enormous amount of time & effort to build the database so the public can learn about their water. Unfortunately, we are seeing that these data are being used to generate inflammatory headlines, which can leave consumers confused and unnecessarily panicked.

We will be updating this water quality database blog post as more questions come in. If you have your own question, please reach out to us (hello@hydroviv.com). One of our water nerds will do their best to get back to you very quickly, even if it’s outside of our business hours.

Frequently Asked Questions 

Updated July 31, 2017

Are All Potential Contaminants Listed In The EWG Tap Water Database?

No. The EWG Tap Water Database pulls data from municipal measurements, but municipalities are only required to test for certain things. Simply put, you can’t detect what you don’t look for. One example of this can be seen by punching in Zip Code 28402 (Wilmington, North Carolina) into the EWG Tap Water Database. GenX, a chemical that has been discharged into the Cape Fear River by Chemours since PFOA since 2010, is not listed, even though it’s been in the center of a huge topic of conversation for the past 2 months in the local media.

Why Is The “Health Guideline” Different Than The “Legal Limit?”

The two different thresholds use different criteria. For example, the “Health Guideline” cited by EWG for carcinogens is defined by the California Office of Environmental Health Hazard Assessment (OEHHA) as a one-in-a-million lifetime risk of cancer, while the “Legal Limit” refers to the MCL which is the limit that triggers a violation by EPA. The OEHHA's criteria are established by toxicological techniques, while the EPA limits are negotiated through political channels. We wrote an article that addresses this topic in much more detail for those who are interested.

Why Am I Just Learning About This Now?

The EPA's Safe Drinking Water Act requires municipalities to make water quality test data public in Consumer Confidence Reports. These reports are required to talk about the water's source, information about any regulated contaminants found in the water, health effects of any regulated contaminant found above the regulated limit, and a few other things. As discussed before, the data in the EWG report use different criteria than the EPA, and it's hard for people to make sense of what's what.

Are The Data Correct If My Water Comes From A Private Well?

No. The EWG Tap Water Database only has data for municipal tap water. Private wells are completely unregulated, and there's no requirement to conduct testing. If you'd like us to dig into our additional water quality databases to help you understand likely contaminants in your private well, we're happy to do so. We don't offer testing services, but we're happy to help you find an accredited lab in your area, give advice on which tests to run, and help you interpret the results! We offer this service for free.

What About My City's Water Quality?

Hydroviv makes it our business to help you better understand your water. As always, feel free to take advantage of our “help no matter what” approach to technical support! Our water nerds will work to answer your questions, even if you have no intention of purchasing one of our water filters. Reach out by dropping us an email (hello@hydroviv.com) or through our live chat. You can also find us on Twitter or Facebook!

Recommended For You

How Do I Filter Chromium 6 From Drinking Water?
Why Are So Many Schools Testing Positive for Lead?
Please Stop Using Cheap TDS Meters To Evaluate Water Quality! They Don't Tell You Anything!


2021 Washington DC Tap Water Report: What You Need To Know

Analies Dyjak @ Saturday, July 1, 2017 at 3:42 pm -0400

Eric Roy, Ph.D.  |  Scientific Founder

***Updated to include 2021 water quality data***

For Hydroviv’s assessment of Washington, D.C. drinking water, we aggregated water quality test data from D.C. Water (the public utility provider) and the U.S. Environmental Protection Agency (EPA), as well as from samples that we collect and analyze. We cross reference these data with toxicity studies in the scientific and medical literature, and look at upcoming regulatory changes. The custom water filters that build and sell for Washington, D.C. are optimized with these factors in mind.

Lead In DC Tap Water

Washington, D.C. is an old city with a lot of lead service lines, so it's not a huge surprise that D.C. has had such a big problem with lead in drinking water. Lead leaches from lead-containing pipes, solder, and fittings, unlike most contaminants which are found at the source. D.C. Water uses two sampling periods when testing for lead: January-June and July-December. In the 107 samples pulled during January-June period, the 90th percentile concentration for lead was 2 parts per billion, and 3 samples were above the 15 part per billion Action Level (AL). In the 105 samples pulled from the July-December sampling period, the 90th percentile concentration was 3 parts per billion, and one of the collected samples exceeded the action level. Although these results indicate that D.C. is in citywide compliance with federal water quality standards, it's important to point out that EPA, CDC and the American Academy of Pediatrics all agree that there is no safe level of lead for children. The bottom line is that the federal standards allow up to 10% of sampled taps to have lead concentrations over 15 parts per billion.

We highly recommend that Washington D.C. residents take a look at this map to see if their home has a lead service line, because those homes (and homes with plumbing that predates 1986) are most susceptible. We also highly recommend taking advantage of D.C. Water's free lead testing program, and any families with small children take steps to remove any lead from their water, even if they don't use a Hydroviv filter. It's important to remember that most pitchers and fridge filters do NOT remove lead from water. Hydroviv Undersink filters are NSF/ANSI 53 certified to remove lead from drinking water.

Detectable Levels of Unregulated Contaminants In DC Tap Water

One thing that has caused quite a bit of alarm from several people in this year's report is that several herbicides, VOC's and synthetic compounds were all found at detectable levels in D.C. drinking water. Herbicides such as Dalapon, shouldn't be a huge surprise seeing that D.C. draws water from near at the end of a river, so there is opportunity for agricultural runoff to enter the river. For anyone who is interested, The Maryland DEP has made the Source Water Assessment for the Potomac River (404 pages) publicly available. 

DC's Water Source: Potomac River

The Washington Aqueduct (operated by the Army Corps of Engineers) draws water from the Potomac River for treatment. District of Columbia Sewer and Water Authority (aka D.C. Water) purchases treated water from the Washington Aqueduct, and is responsible for distributing it throughout D.C. We also have a stand-alone article that entirely focuses on the Potomac River.

Left Out Of The Report: Chromium 6

We were a bit surprised to see Chromium 6 left out of the 2019 water quality report for Washington, D.C. Even though it's a known human carcinogen, chromium 6 is categorized as an "Emerging Contaminant" by EPA but is not regulated on its own. D.C. Water (and 6000 other municipalities) participate in the Unregulated Contaminant Monitoring Rule (UCMR3), which is a nationwide testing program to study "emerging" contaminants. UCMR acknowledges that contaminants on the list most likely cause adverse health effects, including cancer. The concentration in D.C. water average 86 parts per trillion. For perspective, these levels are roughly 4-5x higher than what The State Of California set as a public health goal. We believe that people should not wait for EPA to begin regulating chromium 6 on its own, and filter their water, even it they aren't using our product. It's important to remember that most pitchers and fridge filters do NOT remove chromium 6 from water.

Per and Polyfluoralkyl Substances (PFAS) In Washington, D.C. Drinking Water

PFAS are a category of chemicals found in various non-stick/stain resistant products, as well as fire fighting foam. PFAS are considered to be "emerging contaminants" because they are not currently regulated by EPA, but are known to be toxic and persistent in the environment. PFAS have been detected at surrounding military installments that are in close proximity to the Potomac River (DC's source water). Most municipalities are not required to test for, or remove, PFAS from drinking water. Not all filters are designed to remove PFAS from drinking water. If you'd like find water filters that remove PFAS from tap water, check out this Duke/NC State study.

Disinfectant

The primary disinfectant used to treat Washington DC's tap water is chloramine, except for a few weeks in the spring when DC switches over to chlorine. D.C. (and a growing number of municipalities) use chloramine instead of chlorine for a few reasons: for one, chloramine is more persistent than chlorine, so it maintains its ability to disinfect the water further away from the source. On the other side, chloramine does not quickly dissipate from water if left in a jug overnight. If you want to get it out of the water, you'll need a filter designed to remove chloramine, because a regular charcoal filter doesn't do a great job removing it.

If you want to learn more about Hydroviv's water filters, check out www.hydroviv.com, or drop us a line through live chat or email (hello@hydroviv.com). Even though we sell our products nationwide, Hydroviv is a DC company and we take care of our own backyard!

As always, feel free to take advantage of our "Help No Matter What" approach to technical support. We will answer your questions about water quality even if you have no desire to purchase one of our products. 

Other Articles We Think You'll Enjoy:

Please Stop Using a TDS Meter To Evaluate Your Home's Water Quality
Things To Know Before Replacing Your Home's Lead Service Line
How To Filter Chromium 6 From Drinking Water